COMMUNICATION

www.rsc.org/obc

5-Formyl-2-furylboronic acid as a versatile bifunctional reagent for the synthesis of π -extended heteroarylfuran systems \dagger

Paul R. Parry,^{*a*} Martin R. Bryce *^{*a*} and Brian Tarbit^{*b*}

^a Department of Chemistry, University of Durham, Durham, UK DH1 3LE. E-mail: m.r.bryce@durham.ac.uk

^b Seal Sands Chemicals Ltd., Seal Sands, Middlesbrough, Cleveland, UK TS2 1UB

Received 10th March 2003, Accepted 26th March 2003 First published as an Advance Article on the web 4th April 2003

5-Formyl-2-furylboronic acid reacts cleanly with a range of heteroaryl bromides under Suzuki–Miyaura crosscoupling conditions to produce 2-formyl-5-heteroarylfuran derivatives. Subsequent Wittig olefination reactions afford -conjugated alkene–pyridyl–furan derivatives.

Biaryl/heteroaryl derivatives are extremely important components of pharmaceutical and agrochemical compounds¹ and optoelectronic materials.**²** For their synthesis, the Suzuki– Miyaura protocol for palladium-catalysed cross-coupling of aryl- or heteroarylboronic acids with aryl- or heteroaryl halides is particularly versatile,³ and there has been a recent upsurge of interest in the development of new heteroarylboronic acids (especially pyridyl derivatives) **⁴** and new catalysts **⁵** for this purpose.

A reagent possessing both boronic acid and aldehyde functionalities should offer considerable scope for the synthesis of π-extended biaryl/heteroaryl systems.**⁶** Remarkably, very few such bifunctional reagents are known, and for those which are known their use in sequential Suzuki and Wittig reactions has not been reported. 4-Formylphenylboronic acid,**⁷** 3-formylphenylboronic acid,**⁸** 3-formyl-4-methoxyphenylboronic acid**⁹** and 5-formyl-2-thienylboronic acid**¹⁰** are known. Within the furan series, deboronation of formylfurylboronic acids is a common problem;**¹¹** however, 2-formyl-3-furylboronic acid has been well characterised.**12** A recent report claimed the preparation of crude 5-formyl-2-furylboronic acid **2**, although no spectroscopic or analytical data were presented to support this structure.**¹³**

We now report that 5-formyl-2-furylboronic acid **2** can be readily obtained and purified, and we establish that it is a versatile reagent in the synthesis of a range of new π -extended furan derivatives. ‡ The attraction of 2,5-disubstitution on the furan (as opposed to other isomers) is that π -conjugation through the system will be maximised (see below). Lithiation of acetal **1 ¹⁴** using n-butyllithium followed by reaction with trimethylborate and aqueous workup concomitantly introduced the boronic acid group and liberated the aldehyde group to afford compound **2** in 52% yield after purification (Scheme 1). Crosscoupling reactions of **2** with a range of heteroaryl bromides were explored under standard conditions, using either tetrakis(triphenylphosphine)palladium as catalyst and sodium carbonate as base in DMF at 80 $^{\circ}$ C (conditions A) or bis(triphenylphosphine)palladium dichloride and caesium carbonate in 1,4-dioxane at 95 °C (conditions B). As shown in Table 1 for entries 1–4, conditions B consistently gave higher yields of the desired products **3**–**6**, so conditions A were not used for the other examples (entries 5–8). These results establish that crosscoupling of **2** occurs with both electron-rich heterocyclic partners (furyl and thienyl: entries 1, 2 and 8) and electron-deficient

Scheme 1 i nBuLi, THF, trimethylborate, -78 to 25 °C, aqueous workup; ii Het-Br, Pd(PPh₃)₄, Na₂CO₃, DMF, 80 °C (conditions A); iii Het–Br, Pd(PPh**3**)**2**Cl**2**, Cs**2**CO**3**, 1,4-dioxane, 95 C (conditions B).

pyridyl derivatives. It is notable that electron-withdrawing substituents on the pyridyl ring (entries 4, 6 and 7) resulted in lower yields. This is consistent with previous reactions of pyridylboronic acids with halogenated heterocycles.**⁴***^e* We note that entries 3–7 represent a new route to pyridylfuran derivatives which hitherto have been obtained *via* the Paal reaction of intermediate pyridyl-1,4-diketones,**¹⁵** or *via* a Hantzsch-type reaction from pyridinoylacetates.**¹⁶**

Extension of the π -system of $5-7$ was readily achieved by Wittig olefination using (ethoxycarbonylmethylene) triphenylphosphorane under standard conditions **¹⁷** to afford π-conjugated alkene–pyridyl–furan derivatives **11**–**13** in high yields (Scheme 2). To illustrate further the scope of these reactions, the more elaborate Wittig and Horner–Wadsworth– Emmons reagents **14 ¹⁸** and **15**, **¹⁹** respectively, were employed. Deprotonation of **14** and **15** with n-butyllithium followed by reaction with compound **6** gave products **16** and **17** in 51 and 11% yields, respectively (Scheme 3). The low yield of the latter reaction was due to the presence of many unidentified byproducts (TLC evidence) and the known instability of reagent **15**. **19**

The UV-Vis absorption spectra of compounds **16** and **17** established that effective intramolecular charge-transfer arises from combining an electron-donating 1,3-dithiol-2-ylidene moiety and an electron-deficient pyridyl unit at opposing

				Isolated yield (%)	
Entry	Boronic acid	$\operatorname{Br-Het}$	$\bf Product$	Conditions A	Conditions ${\bf B}$
$\,1\,$	$\mathbf 2$	Br	OHC O $\mathbf{3}$	34	64
$\sqrt{2}$	$\mathbf 2$	Br	OHC റ 4	$30\,$	61
\mathfrak{Z}	$\mathbf 2$	OMe Br	OHC ⁻ ้ก OMe 5	$16\,$	52
$\overline{4}$	$\mathbf 2$	$-CF_3$ Br·	OHC O CF ₃ $N -$ $\bf{6}$	$24\,$	$31\,$
\mathfrak{s}	$\mathbf 2$	Br	OHC O. N $\overline{7}$		57
$\sqrt{6}$	$\mathbf 2$	CN _. Br	CN _, OHC Õ 8		$15\,$
$\boldsymbol{7}$	$\overline{2}$	$-NO2$ Br [.]	OHC- NO ₂ 9 'N		$44\,$
$\,8\,$	$\mathbf 2$	NO ₂ Br	$-NO2$ OHC 10		54

Conditions A: tetrakis(triphenylphosphine)palladium as catalyst and sodium carbonate as base in DMF at 80 °C; Conditions B: bis(triphenylphosphine)palladium dichloride and caesium carbonate in 1,4-dioxane at 95 °C.

Scheme 3 i **14** or **15**, nBuLi, THF, -78 °C, then reflux.

termini of the conjugated π-system. There is a red shift in the lowest energy absorption band in dichloromethane solution in the sequence **6** (λ_{max} 329 nm), **16** (λ_{max} 403 nm) and **17** $(\lambda_{\text{max}}$ 430 nm) which is consistent with enhanced electron donating ability of the dimethyl-1,3-dithiole unit in **17** compared with its dimethoxycarbonyl analogue **16**. **20**

In summary, we have demonstrated a new route to π-extended heteroarylfuran systems by exploiting the rare combination of functional groups in compound **2**. Further extension of this sequential Suzuki–Miyaura and Wittig methodology will be applicable to other 2-heteroarylfuran derivatives and derived π -extended systems of particular relevance to conjugated molecular wires of well-defined conjugation lengths.**6,21**

Experimental

5-Formyl-2-furylboronic acid (2)

To a solution of **1** (1.0 g, 5.9 mmol) in anhydrous THF (20 cm**³**) at -78 °C was added nBuLi (1.6 M in hexane, 2.2 cm³, 3.5 mmol) dropwise. The reaction mixture was stirred for 5 h at -78 °C then TMB (815 mg, 9.6 mmol) was added dropwise and the reaction mixture was allowed to warm to 25° C with stirring overnight. The organic solvent was evaporated *in vacuo* and the remaining aqueous layer was taken to pH 10 (with 5% NaOH) and washed with ether. The aqueous layer was then carefully acidified to pH 4 (with 48% HBr) to precipitate a product which was filtered then washed with ether (10 cm**³**) to afford **2** as a brown solid (428 mg, 52%), mp 150-151 °C; ¹H NMR (250 MHz, acetone-d**6**) δ 9.70 (1H, s, CHO), 7.92 (2H, s, OH), 7.40 (1H, d, *J* = 3.5 Hz), 7.19 (1H, d, *J* = 3.5 Hz); **¹³**C NMR (100 MHz, acetone-d₆) δ 178.44, 155.97, 122.79, 121.63. Anal. calc. for C**5**H**5**BO**2**: C, 42.93; H, 3.60. Found: C, 42.72; H, 3.70%.

General procedure for the cross-coupling reactions

The boronic acid 2, the halide, and the catalyst (5 mol[%] relative to **2**) were added sequentially to degassed solvent (10 cm**³**) and the mixture was stirred at 20 $^{\circ}$ C for 30–60 min. Degassed aqueous base solution was added and the mixture was heated under N_2 until TLC monitoring showed that the reaction was complete. Solvent was evaporated *in vacuo* and ethyl acetate was added. Then the organic layer was purified by column chromatography on silica gel.

Conditions A: $Pd(PPh₃)₄$, $Na₂CO₃$, DMF, 80 °C.

Conditions B: Pd(PPh**3**)**2**Cl**2**, Cs**2**CO**3**, 1,4-dioxane, 95 C.

Acknowledgements

We thank Seal Sands Chemicals Ltd. for funding.

Notes and references

‡ All new compounds gave satisfactory spectroscopic and analytical data. Detailed characterisation is given in the ESI.

- 1 Review: S. P. Stanforth, *Tetrahedron*, 1998, **54**, 263.
- 2 Review: Y. Shirota, *J. Mater. Chem.*, 2000, **10**, 1.
- 3 (*a*) N. Miyaura and A. Suzuki, *Chem. Rev.*, 1995, **95**, 2457; (*b*) A. Suzuki, in *Metal-Catalyzed Cross-Coupling Reactions*, F. Diederich and P. J. Stang, eds., Wiley-VCH, Weinheim, Germany, 1998, ch. 2; . Aryl iodides, bromides and triflates are usually used; however, aryl chlorides (K-i. Gouda, E. Hagiwara, Y. Hatanaka and T. Hiyama, *J. Org. Chem.*, 1996, **61**, 7232; R. B. Bedford, M. E. Blake, C. P. Butts and D. Holder, *Chem. Commun.*, 2003, 466) and even aryl fluorides (D. A. Widdowson and R. Wilhelm, *Chem. Commun.*, 2003, 578) can be used in certain circumstances.
- 4 For examples see (*a*) U. Lehmann, O. Henze and A. D. Schlüter, *Chem. Eur. J.*, 1999, **5**, 854; (*b*) A. Bouillon, J.-C. Lancelot, V. Collot, P. R. Bovy and S. Rault, *Tetrahedron*, 2002, **58**, 2885; (*c*) A. Bouillon, J.-C. Lancelot, V. Collot, P. R. Bovy and S. Rault, *Tetrahedron*, 2002, **58**, 3323; (*d*) A. Bouillon, J.-C. Lancelot, V. Collot, P. R. Bovy and S. Rault, *Tetrahedron*, 2002, **58**, 4368; (*e*) P. R. Parry, C. Wang, A. S. Batsanov, M. R. Bryce and B. Tarbit, *J. Org. Chem.*, 2002, **67**, 7541; (f) W. Li, D. P. Nelson, M. S. Jensen, R. S. Hoerrner, D. Cai, R. D. Larsen and P. J. Reider, *J. Org. Chem.*, 2002, **67**, 5394; (*g*) P. R. Parry, M. R. Bryce and B. Tarbit, *Synthesis*, 2003, in press.
- 5 (*a*) A. Zapf, A. Ehrentrant and M. Beller, *Angew. Chem., Int. Ed.*, 2000, **39**, 4153; (*b*) M. Feuerstein, D. Laurenti, C. Bougeant, H. Doucet and M. Santelli, *Chem. Commun.*, 2001, 325.
- 6 For examples of such π-extended systems obtained by different methodology see: (*a*) J. Roncali, *J. Mater. Chem.*, 1997, **7**, 2307; (*b*) C.-F. Lee, C.-Y. Liu, H.-C. Song, S.-J. Luo, J.-C. Tseng and H.-H. Tso and T.-Y. Luh, *Chem. Commun.*, 2002, 2824.
- 7 (*a*) S. Kotha and A. K. Ghosh, *Synlett*, 2002, 451; (*b*) D. Bouyssi, V. Gerusz and G. Balme, *Eur. J. Org. Chem.*, 2002, 2445.
- 8 N. D. Hone, S. G. Davies, N. J. Devereux, S. L. Taylor and A. D. Baxter, *Tetrahedron Lett.*, 1998, **39**, 897.
- 9 M. Cavazzini, A. Manfredi, F. Montanari, S. Quici and G. Pozzi, *Eur. J. Org. Chem.*, 2001, **24**, 4639.
- 10 K. Matsuka, M. Matsuo and M. Irie, *J. Org. Chem.*, 2001, **66**, 8799.
- 11 D. Florentin, M. C. Fournié-Zaluski, M. Callanquin and B. P. Rogers, *J. Heterocycl. Chem.*, 1976, **13**, 1265.
- 12 (*a*) S. Gronowitz and U. Michael, *Ark. Kemi.*, 1970, **32**, 283; (*b*) Y. Yang, *Synth. Commun.*, 1989, **19**, 1001.
- 13 S. M. Starling, D. S. Raslan and A. B. de Oliveira, *Synth. Commun.*, 1998, **28**, 1013.
- 14 S. F. Thames and H. C. Odom, Jr., *J. Heterocycl. Chem.*, 1966, 490.
- 15 R. A. Jones and P. U. Civcir, *Tetrahedron*, 1997, **53**, 11529.
- 16 P. Ribereau and G. Queguiner, *Can. J. Chem.*, 1983, **61**, 334.
- 17 G. Pandy, T. D. Bagul and A. K. Sahoo, *J. Org. Chem.*, 1998, **63**, 760.
- 18 M. Sato, N. C. Gonella and M. P. Cava, *J. Org. Chem.*, 1976, **41**, 882.
- 19 A. J. Moore and M. R. Bryce, *J. Chem. Soc., Perkin Trans. 1*, 1991, 157.
- 20 E. H. Elanddaloussi, P. Frère, J. Roncali, P. Richomme, M. Jubault and A. Gorgues, *Adv. Mater.*, 1995, **7**, 390.
- 21 (*a*) *Electronic Materials: The Oligomer Approach*, K. Müllen and G. Wegner, eds., Wiley-VCH, Weinheim, 1998; (*b*) J. M. Tour, *Acc. Chem. Res.*, 2000, **33**, 791.